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Abstract

Abead and springmodel is considered for theBrownian dynamics simulationof the behavior of cyclic polymer chains (rings) in a dilute solution

under shear or elongational flow. Finite extensibility, excluded volume, and hydrodynamic interaction are taken into account tomake the polymer

model as realistic as possible. In shear flow, the deformation of the chain and the shear rate viscosity dependence (the flow curve), are studied and

characterized. In elongational flow, the coil-stretch phenomenon is described and the relationship between the critical elongational rate and the

molecular weight is given. The qualitative behavior obtained for ring polymers is analogous to that of linear polymers.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The study of the behavior of flexible polymer chains in a

flowing solution has received an important impulse during the

past decades due to the advent of powerful computational

techniques that allow for the inclusion ofmore realistic effects

in the polymer models. Most efforts have been devoted to

solve conformational and dynamical problems of linear

polymer under both shear and extensional flows.

In simple shear it is well known that polymer chains are

oriented and deformed, which influences the solution flow

properties, thus appearing the characteristic non-Newtonian

behavior. On the other hand, under extensional flows,

flexible polymer chains experience the so-called coil-stretch

transition [1,2], consisting of the abrupt, sudden, increase in

polymer property values when the extensional rate exceeds

a certain critical value. Previous papers of our group [3,4]

are devoted to the study of such systems, and show the

importance of the inclusion of effects such a excluded

volume (EV) and hydrodynamic interaction (HI) in order to

get results comparable to experiments.

Notwithstanding the huge amount of work on flowing
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polymer solutions, less attention has been paid to polymers

with non-linear topology, mainly to the so-called ring

polymers. The improvement of experimental techniques

that allows for both synthesis and accurate characterization

of ring polymers makes the theoretical study of these non-

linear structures of great practical interest. Equilibrium

properties of flexible cyclic chains have been studied in

some extent analytically (see Refs. [5,6] and references

therein), experimentally [7–9], and numerically [7,8,10,11].

A review of the recent advances in the topic of cyclic

polymers is found in Ref. [12]. In this paper, we show the

behavior of such ring polymers under two typical flow

situations: simple shear and steady uniaxial elongational

flow. For such a study, we make use of the Brownian

dynamics simulation technique (BD). We do not show

comparison to experimental data. We hope our simulation

results will be of interest for the interpretation of the

behavior of dilute ring polymer solutions under flow, for

which no much experimental work is available.
2. Model and methodology

We consider a dilute solution of ring polymers subjected

to both simple shear and steady elongational flows. The
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velocity field of the shear flow is given by

vx Z _gy; vy Z 0; vz Z 0 (1)

whereas the elongational velocity field is given by

vx Z _3x; vy ZK
1

2
_3y; vx ZK

1

2
_3z (2)

where _g and _3 are the shear rate and the elongational rate

respectively. In shear flow, it is convenient to use a

dimensionless form of the shear rate related to the molecular

weight of the polymer chain

bZ
Mhs½h�0

NAkBT
_g (3)

whereM is the molecular weight, hs is the solvent viscosity,

[h]0 the zero-shear intrinsic viscosity, NA the Avogadro

number and kBT the Boltzmann factor.

The polymer molecule is modeled as a cyclic bead-and-

spring chain [13] with N beads connected by N FENE (finite

extensible non-linear elongational) springs which follow the

force law [13]

FðsÞ ZK
H

1K ðQ=QmaxÞ
2
Q (4)

where Q is the spring vector, Qmax the maximum spring

length and HZ3kBT/b
2 the spring constant, being b2 the

equilibrium mean squared length of a Hookean spring.

For checking purposes some simulations were carried

out using Hookean springs which follow the linear law

F(s)ZHQ.

Intramolecular, excluded volume interactions to mimic

solvent quality are simulated by introducing interaction

forces between non-neighboring beads. An adequate choice

is the Lennard-Jones (LJ) potential

V Z 43LJ
sLJ

rij

� �12

K
sLJ

rij

� �6� �
(5)

where rij is the distance between beads i and j and 3LJ
and sLJ are the Lennard-Jones parameters: minimum

energy and zero energy distance, respectively. As shown

by Freire and co-workers, appropriate LJ parameter

values that reproduce correctly the power laws of

polymer properties are 3LJZ0.1kBT for good solvents

[14] and 3LJZ0.3kBT for theta solvents [15], with sLJZ
0.8b in any case. Therefore, we adopt those values in

the present work.

The dynamics of the polymer chain is monitored

from trajectories of individual molecules obtained by BD

simulation. We employ a predictor–corrector version of the

Ermak and McCammon algorithm [16] proposed by Iniesta

and Garcı́a de la Torre [17]. Simulations with and without

HI were performed. Fluctuating hydrodynamic interaction

between beads is taken into account using the Rotne–

Prague–Yamakawa tensor [18,19]. For the bead friction, we

use a Stokes coefficient zZ6phss, where the bead radius
sZ0.257b, which corresponds to a dimensionless HI

parameter h�Z ðz=6phsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H=pkBT

p
Z0:25. In this way, five

independent polymer trajectories are generated. Steady-

state properties are computed by averaging over each

trajectory, after discounting the initial part for equilibration

purposes. Then, the mean and standard deviation over the

five trajectories are taken to characterize the actual property

values.

In this work, quantities are given in dimensionless

units (indicated with an asterisk as superscript). This is

accomplished by dividing length by the equilibrium

root-mean-square spring length, b, energy by kBT and

time by zb2/KBT. In this unit system, the spring constant

becomes H*Z3 and the maximum spring length

Q�
maxZ10. This value, used in previous works [4],

corresponds to a value of the so-called extensibility

parameter about 100, adequate to represent highly

flexible polymer chains [20]. The simulation time step

is Dt*Z10K4, as required by the very steep behavior of

the Lennard-Jones potential.
3. Results

3.1. Equilibrium

Before presenting the flow behavior of ring polymers, we

briefly show equilibrium results, i.e., in the absence of flow,

performed for testing purposes. Thus, we reconsider the

calculations carried out by Bernal et al. [10,11] over 10

years ago using the Monte Carlo technique and try to verify

their results using a more extensive computation. It is usual

to define the ratio between a ring polymer property and its

linear counterpart, i.e., that of a linear chain with identical

number of beads, N. Thus, qs;0Z hs2ir;0=hs
2il;0 and

qh;0Z ½h�r;0=½h�l;0, where hs2i is the mean squared radius of

gyration, [h] the intrinsic viscosity, the subscripts r and l

stand for ring and linear, respectively and subscript zero

refers to the solution at rest (no flow). When no HI and no

EV are considered, it is shown that qs,0Zqh,0Z1/2 [6]. Our

simulation results agree quite well with this behavior as well

as with the previous Monte Carlo simulations performed by

Bernal et al. [10,11]. Taking into account HI effects, we get,

in the absence of EV, qh,0w0.53 and qs,0w0.50, and for

good solvent conditions, qh,0w0.59 and qs,0w0.54. The

values of these ratios are independent of N provided N is

large enough so that they were obtained averaging their

simulation values for various chain lengths N. Nevertheless,

those ratios are slightly sensitive to the model used to

describe the polymer as shown in previous works [10].

Furthermore, there are difficulties in establishing the

conditions under which the solvent quality degree for a

ring chain can be compared to that for a linear chain [10,21].

A classical quantity that is free of these inconsistencies is

the Flory parameter, F. We have determined the value of

this constant for ring polymers with HI from our simulations



Fig. 2. Variation of hs2i�0 and ½h�
�
0 (solution at rest) with the number of beads

of the ring, for both theta and good solvent conditions and with HI.
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as

FZ
½h��NA

ð6hs2i�Þ3=2
(6)

The Flory parameter presents a slight variation with the

number of beads of the chain. Therefore, we computedF for

several chain lengths, from NZ12 up to NZ91, and made

the extrapolation to the long chain limit, i.e. 1=
ffiffiffiffi
N

p
/0, as

illustrated in Fig. 1. Thus, we obtained for theta solvents

F!10K23x3.8–4.0, depending on the inclusion or not

(ideal chain) of LJ potential in the simulation, and F!10K23

x2.8 in good solvents. These results are in very good

agreement with the values from Bernal et al. [10,11].

Finally, we also show that the ring polymer model used

in our simulations reproduces the equilibrium power laws

relating hs2ir,0 and [h]r,0 with the molecular weight, i.e.

number of beads N. Thus, in Fig. 2 we can observe the N

dependency of hs2ir,0 and [h]r,0 altogether, for both theta

and good solvent conditions and with HI. From the slopes

of those plots, we obtain that in theta solvent hs2ir,0f
N1.006G0.003 and [h]r,0fN1.626G0.003, and in good solvent

hs2ir,0fN1.189G0.003 and [h]r,0fN1.805G0.003. The exponents

of the foregoing scaling relationships, which also holds for

linear chains, agree quite well with results in [11] as well as

with their theoretical values (e.g. hs2ir,0(theta)fN1, [h]r,0
(theta)fN1.5, hs2ir,0(good)fN1.2, [h]r,0(good)fN1.8), except

for the intrinsic viscosity at theta conditions, which is

slightly higher than the expected value 1.5. Perhaps

Lennard-Jones parameters representing theta conditions

for ring chains should be reconsidered.
3.2. Shear flow

We study the influence of the shear rate b on both the

polymer dimensions, in terms of the parameter d2, which

gives the relative increase in the mean-square radius of

gyration
Fig. 1. Dependence of the Flory parameter with the chain length, N, for

several solvent conditions and with HI. Extrapolation to N/N.
d2 Z
hs2i

hs2i0
K1 (7)

which measures the polymer deformation, and on the

intrinsic viscosity

½h� ¼K
NA

hsnM

ðtxyÞp

_g
(8)

where n is the number concentration of polymer and (txy)p
the polymer contribution to the shear stress. For a bead-and-

spring macromolecular model, the stress tensor is calculated

using the modified Kramers expression [13]

ta;b Z
XN
iZ1

hRi;a$F
ðsÞ
i;bi (9)

where a,bZx, y, z, Ri is the position vector of a bead i

respect to the center of mass of the chain and FðsÞ
i is the total

spring force on bead i. The brackets h imean conformational

average.

Fig. 3(a) shows the evolution of d2 with b for various

polymer lengths, N, in good solvent conditions ð3�LJZ0:1Þ

and with HI. The aspect of those plots are similar to that for

linear chains with both FENE and Hookean springs [3].

Thus, at low and moderate shear rates, d2 follows a straight

line in a log–log plot. Besides, values of d2 for different N

tend to superimpose, since b makes results molecular

weight independent at low shear rates. At high shear rates,

however, a downward curvature appears as a consequence

of the finite chain extensibility, and asymptotic d2 values

differ, increasing with the number of beads,N. The influence

of the excluded volume effects on d2 is shown in Fig. 3(b).

The shear rate dependence of the deformation reflects the

complex interplay of the effects of hydrodynamic inter-

action, excluded volume and finite extensibility. These

effects have been evaluated for linear chains [22–24]. The

dependence can be expressed by a power law,

d2 ZCba (10)

For ideal (no EV, infinitely extensible) Gaussian chains with



Fig. 3. (a) Dependence of the ring deformation, d2, with the shear rate, b, for

chains with several N with HI and good solvent conditions. (b) Dependence

of d2 with b for a ring with NZ25, HI and several solvent conditions.
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HI, this law holds with an exponent aZ2—although with

different C constants—in the two limits of very low and very

high b, but there is an intermediate region in which the HI

effects vanish gradually as b increases [23]. Furthermore,

when EV effects are introduced, the apparent exponent is

variable with shear rate and smaller than 2 [24]. Finally, the

introduction of finite extensibility dominates the high shear

region.

In the region of intermediate b, our present results for

ring polymers can be fitted to Eq. (10) with the values of a

that are collected in Table 1. The results are similar to those

of linear polymers: for the most simple case (no HI, no EV,

no FENE) the theoretical result aZ2 is reproduced by our

simulations, and for the more real models (HI, EV, FENE)

exponents close to 3/2 are predicted.

The peculiarity of the ring topology in sheared chains can
Table 1

Exponents, a, of the power law for deformation d2

No-HI HI

IDEAL 2.01G0.07 1.82G0.07

THETA 1.82G0.04 1.65G0.02

GOOD 1.58G0.04 1.52G0.03
be analyzed looking at the values of d2 of ring and linear

chains of the same length under comparable conditions. The

effect of shear on polymer behavior is gauged by the b

parameter, that combines the shear strength and the size of

the chain. Fitting results for linear and ring chains to Eq.

(10), with a common exponent az1.6, we obtain d2l =d
2
r Z

Cl=Crz3:9 for good solvent conditions, valid for a wide

range of b in the intermediate region where Eq. (10) holds.

This ratio, for a common b, contains the effect of

topology arising from the differences in [h], which enters in

the definition of b (Eq. (3)). With a more practical

perspective, we can consider the ring-to-linear ratio

achieved for polymers with the same molecular weight

and in the same instrumental conditions, i.e. for the same

shear rate _g. In this case, the ratio is d2l =d
2
r Z ðCl=CrÞq

Ka
h;0.

With the ratio of intrinsic viscosities reported above, we

obtain d2l =d
2
r z9:1, which indicates that the ring polymers

are markedly less deformed than linear ones. Furthermore,

as d2zhs2i/hs2i0 for a sufficiently high shear rate, we have

qs Z qs;0
d2r

d2l
z0:059 (11)

Thus, while the square radius of gyration, hs2i, of the ring

polymer is about half of that its linear counterpart in a

solution at rest, when the solution is sheared hs2i of the ring

is about 16 times smaller than that of the linear chain. Again,

it is clear that rings deform in strong shear much less than

linear chains. Fig. 4(a) shows the shear rate evolution of the

intrinsic viscosity (relative to its zero-shear value) of ring

polymers of several N with HI and in good solvent

conditions. As expected, b makes [h]/[h]0 values N

independent except at very high shear rates. The viscosity

curve presents three clear different regions. Region I is the

Newtonian plateau, characteristic at low shear rate (b%1 in

our plots). Region III is the shear-thinning region,

characteristic of most macromolecular fluids, where vis-

cosity decreases strongly with shear rate. This non-linearity

arises because molecules are highly oriented along the flow

direction and close to fully stretched. The slope of this

region in our log–log plot is about K1, which is indeed an

upper limit characteristic of the FENE spring model.

Experimental slopes are usually smaller (in absolute

value) than K1.

However, it must be noticed that experiments usually do

not reach such high shear rates and solutions are not

infinitely dilute. Finally, an interesting part is region II,

which could be termed as ‘pseudo-plateau’. There, the

viscosity diminishes slightly with b, before the clear shear-

thinning region. This is a kind of behavior found when the

Lennard-Jones potential, representing either theta or good

solvent conditions, is present. Fig. 4(b) corresponds to the

same kind of representation as Fig. 4(a) for a ring chain with

NZ25 both in the absence of intramolecular potential (ideal

chain) and with intramolecular LJ potential representing

both good and theta solvent conditions. As observed, the



Fig. 4. (a) Intrinsic viscosity, [h]/[h]0, vs. b of rings with several N, HI and

good solvent conditions. (b) Intrinsic viscosity, [h]/[h]0, vs. b of rings with

NZ25, HI and several solvent conditions.

Fig. 5. (a) Semilog plot of the shear rate dependence of the intrinsic

viscosity for both a linear and a ring chain with NZ25, HI and good solvent

conditions. (b) Semilog plot of the evolution of the ring-to-linear intrinsic

viscosity ratio, qh, with _g� for chains with NZ25, HI and good solvent

conditions.
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solvent quality (good or theta) modeled with a LJ potential

has no effect on the viscosity curve and points for both cases

superimpose quite well, appearing the above commented

pseudo-plateau (region II). However, the curve correspond-

ing to an ideal chain (empty triangles) does not present the

slowly decreasing region II and only two regimes, namely

Newtonian plateau and shear thinning, are clearly distin-

guished. In any case, the onset of the shear-thinning region

appears about the same value of b. The observation of the

intermediate pseudo-plateau region for ring polymers

follows a similar observation for linear polymers [25].

By carrying out simulations for ring and linear chains

under comparable conditions, the effect of topology on non-

Newtonian behavior can be ascertained. Fig. 5(a) shows the

shear rate dependence of the intrinsic viscosity in the

intermediate region, where [h] falls to about one tenth of

[h]0, which is the one that could be accessible in

experiments. The variation of [h] in this region, as

commented above, results from simultaneous effects of

EV and HI and is similar but not coincident for the two

topologies.

As we showed for d2, the comparison of the shear

influences can be made directly in terms of the shear rate _g.
Values of [h]/[h]0 at a common _g can be combined to yield a

shear-dependent ring-to-linear ratio of viscosities,

qh Z
½h�r

½h�l
(12)

Values of qh as a function of shear rate are presented in Fig.

5(b). Note that if the non-Newtonian effect is represented by

the ratio [h]/[h]0 then we would have

qh Z
½h�r=½h�r;0

½h�l=½h�l;0
qh;0 (13)

In the intermediate region, qh varies in a complex fashion,

taking values higher than qh,0 at high _g. At a common _g, the
rings are ‘less non-Newtonian’ than their linear counter-

parts. Thus, in this intermediate region of moderate, likely

accessible shear rates, the viscosity of ring chains

approaches and even surpasses that of linear chains.

3.3. Elongational flow

When flexible polymers are subjected to an elongational

rate of strain greater than a certain threshold value they
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experience an abrupt increase in their conformation

dependent properties due to the sudden unraveling of

the random coil [2]. In this paper, we are concerned with the

dependence of the average steady-state properties on the

elongational rate. This kind of study allows for the deter-

mination of the critical elongational strain rate value, _3c.
Fig. 6(a) illustrates clearly the coil-stretch phenomenon

for a ring chain of 25 beads with HI. There, the ratio of the

elongational intrinsic viscosity, ½ �h�, to its equilibrium value

3[h]0, [h]0 being the zero-shear intrinsic viscosity (Trouton

relation), is represented vs. the elongational rate of strain.

The elongational intrinsic viscosity is defined as

½ �h� ¼
NA

hsM

txx Ktyy

_3
(14)
Fig. 6. (a) Evolution of the elongational intrinsic viscosity (normalized to its

equlibrium value) with the dimensionless elongational rate, _3� for a ring

with NZ25, HI and theta and good solvent conditions. (b) Evolution of the

normalized birefringence with _3� for a ring with NZ25, HI and both theta

and good solvent conditions. (c) Evolution of the dimensionless mean

squared radius of gyration, hs2i* with _3�, for a ring with NZ25. Theta and

good solvent and FENE and Hookean springs are considered.
where txx and tyy are the normal components of the stress

tensor, parallel and perpendicular to the flow, respectively.

The polymer contribution to the components of the stress

tensor is computed according to Eq. (9). As observed, at low

_3 the elongational viscosity is independent of the flow rate,

as corresponds to the Newtonian regime. However, at _3R _3c
the viscosity increases abruptly, giving the characteristic

elongational-thickening behavior of polymer solutions. As

explained in the previous section, at very high flow rates, the

curve tends to reach a plateau when FENE springs reach

their maximum elongation. A commonly used property to

monitor experimentally the coil-stretch transition is the flow

birefringence. In Fig. 6(b) the value of the dimensionless

birefringence Dn*, i.e. the birefringence Dn normalized to

its limiting value for the fully-stretched chain, DnN, is

represented vs. the elongational rate. Thus, Dn* tends to 1 as
_3 increases. The normalized birefringence is computed as

Dn� Z
Dn

DnN
Z

1

ðNK1ÞQmax

XNK1

jZ1

hðQx
j Þ
2 K ðQ

y
j Þ
2i (15)

where Qa
j refers the a component of the connector vector j

(i.e. the spring connecting beads j and jC1) and Qmax is, as

defined before, the maximum spring length. As expected, at

low _3 the birefringence is independent of the flow rate and at

_3R _3c its value increases suddenly. Analogously, Fig. 6(c)

displays the results for the steady-sate values of the mean

square radius of gyration, hs2i, as a function of _3 for ring
chains of 25 beads with HI and in both theta and good

solvent conditions. In addition, some results for Hookean,

instead of FENE, springs have been included to illustrate the

model independency of the critical value of the elongational

rate. The coil-stretch transition is again clearly seen as a

large, sudden increase in hs2i at a certain value of _3c. Thus at
_3! _3c, chains stay near their equilibrium coil conformations

and therefore dimensions of the chain in a good solvent

(black symbols) are slightly higher than in a theta solvent

(empty symbols). However, the stretching process is so

sharp that chains, irrespective of the model and solvent

power considered, experience the transition around the same

_3c. The value of the critical elongational rate is, instead,

strongly dependent on the molecular weight of the polymer

(number of beads in our bead-spring model) as well as the

presence or absence of HI, as discussed in our previous

paper [4], where the power law relating the critical rate to

the polymer length for linear chains was determined. It is

then the purpose of the last part of this paper to show the

exponent arising for ring polymers both with and without

HI.

The strong effect of the coil-stretch transition on polymer

properties makes the value of _3c easily computable. The case

of Gaussian (Hookean) chains is particularly simple due to

their infinite extensibility. Thus, in a computer experiment

the radius of gyration of a single chain, initially in a coiled

conformation, is monitored as the chain is stretched by an

elongational flow of fixed _3. As soon as _3R _3c the chain will
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rapidly and limitlessly grows in size. In this way, _3c can be

encompassed using a series of simulations with different _3.
In order to refine the determination of _3c, the single-

molecule run is repeated a few times with different starting

conformations. For FENE chains, a similar strategy is

employed. However, as chain size is kept limited, another

practical criterion must be imposed to check for coil-stretch

transition. In this work, we consider that the transition takes

place as soon as the radius of gyration reaches fifty times its

equilibrium value, s2transZ50s20. The transition is so sharp,

that several criteria can be used without influence on the

critical value obtained. Following this procedure for rings

with different N, the plots in Fig. 7 are drawn. This figure

shows, in a log–log plot, the scaling relationships between _3c
and N for rings with and without HI and both good and theta

solvent conditions. As shown, the slope is the same

regardless of solvent power, but depends upon the inclusion

or not of HI effects. In the absence of HI, we get the

equality _3�c Z ð100G10ÞNðK2:00G0:05Þ, which agrees with the

well-known quadratic power law governing free-draining

(no-HI) linear chains. On other hand, in presence of HI

(non-draining chains) we get _3�c Z ð51G3ÞNðK1:556G0:014Þ.

Both scaling relationships are in perfect agreement with

previous computational results obtained for linear chains

[4]. Therefore the exponent of the foregoing power law is

maintained when changing from a linear to a cyclic

topology, varying just in the factor multiplying N. In

conclusion, the power law found experimentally in theta

solvents [2,26]

_3c ZCr
3N

K3=2 (16)

is reproduced by simulations with non-preaveraged HI and

holds for both ring and linear chains. By forcing our

simulation results with HI to fit Eq. (16), i.e. the exponent of

the power law to be exactly 3/2, we get a Cr
3x48:0. From

our previous work [4] we obtained for linear chains with HI

a proportionality constant Cl
3x11:7. Therefore the ratio of

the critical elongational rate of ring chains, _3rc, to that of
Fig. 7. Dependence of the dimensionless critical elongational rate, _3�c , with
ring size, N. All the possible interactions: no HI and HI, and theta and good

solvent conditions are considered.
linear chains, _3lc, with the same length N or molecular

weight, M, is a constant independent of chain length,

_3rc
_3lc
Z

Cr
3

Cl
3

x4:1 (17)

The critical elongational rate of rings is about four times

larger than that of linear chains. As we showed in the case of

shear rate, rings are more resistant to flow deformation.
4. Summary

In this paper, we have used Brownian dynamics and the

bead-spring model to study the flow behavior of cyclic

polymers. Both in simple shear and uniaxial elongational

flow, the ring chains present a qualitative behavior

analogous to that of linear polymers. Under shear, the

deformation of the chain scales with the dimensionless shear

rate following a power law whose exponent value depends

on the inclusion or not of intramolecular interactions. Under

ideal conditions, without HI and EV interactions, the well-

established quadratic power law, d2ZCb2, holds. Never-

theless the inclusion of excluded volume and hydrodynamic

interaction tend to diminish the exponent value, thus the

deformation becoming more difficult that under ideal

conditions. This kind of behavior is also expected for linear

polymers [24]. On other hand, the shear intrinsic viscosity is

shown to present the classical behavior of polymer

solutions: a Newtonian plateau at law shear rates and a

power law decay at high shear rates, the so-called shear-

thinning region. When excluded volume is present, the non-

Newtonian regime starts with a soft decay in the viscosity

before reaching the steep true shear-thinning region.

Analogous to the usual data analysis at equilibrium, a

comparison between linear and ring polymers was carried

out through the ring-to-linear ratios of the radius of gyration

and the intrinsic viscosity, e.g. qs and qh, evaluated at

comparable shear rates. We found that qsz0.059, which

indicates that rings deform under strong shear much less

than their linear counterparts. On the other hand, the value

of qh depends on shear, behaving in a complex way at

moderate shear rates and increasing at strong shear rates. In

any case, qhRqh,0 which indicates that the viscosity of ring

chains approaches and, at a high enough shear rate, even

exceeds, that of linear chains.

Under elongational flow, cyclic polymers present the

typical coil-stretch transition, analogous to that of linear

chains. Indeed, the power law relating the critical elonga-

tional rate to the number of elements of the chain, N, i.e. its

molecular weight, presents the same exponent for both

linear and ring polymers, depending only on the presence or

absence of HI. Clearly, to obtain results comparable with

experiments, HI must be considered in the simulations. The

proportionality constant of that scaling relationship is

different for linear and ring polymers, the proportionality

constant ratio, Cr
3=C

l
3, being about 4.
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